Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Braz. J. Pharm. Sci. (Online) ; 58: e191132, 2022. tab, graf
Article in English | LILACS | ID: biblio-1394049

ABSTRACT

Abstract To explore the effects and mechanisms of benzoylaconitine and paeoniflorin on collagen-induced arthritis (CIA) rats. Weight, paw swelling, arthritis index and joint pathologic changes were examined in each group after CIA induction. PGE2, IL-1ß, IL-6, IL-10, TNF-α, VEGF, MMP-3, IgG and anti-CII Ab were assessed by ELISA; STAT1 and STAT3 expressions were analyzed immunohistochemically, and the ultrastructure of synovial cells was observed by transmission electron microscopy. Therapeutic effects were determined in CIA rats via injecting benzoylaconitine and paeoniflorin, which could alleviate the degree of swelling and arthritis index (AI) and pathological lesions of the sacroiliac gland; decrease the levels of PGE2, IL-1ß, TNF-α, VEGF and IgG in serum; reduce STAT1 and STAT3 expression in the membrane tissue; and inhibit the secretion and proliferation of synovial cells. These results showed that benzoylaconitine and paeoniflorin could significantly palliate the arthritic symptoms of CIA rats, and better therapeutic effects could be achieved if the two components were used in combination


Subject(s)
Animals , Male , Rats , Arthritis, Experimental/chemically induced , Therapeutic Uses , Enzyme-Linked Immunosorbent Assay/methods , Dinoprostone/adverse effects , Interleukin-6/pharmacology , Interleukin-1/pharmacology , Interleukin-10/pharmacology , Matrix Metalloproteinases , Microscopy, Electron, Transmission/methods
2.
Braz. j. infect. dis ; 21(4): 386-390, July-Aug. 2017. graf
Article in English | LILACS | ID: biblio-888886

ABSTRACT

Abstract Mycobacterium tuberculosis (MTB) adopts a special survival strategy to overcome the killing mechanism(s) of host immune system. Amongst the many known factors, small heat shock protein 16.3 (sHSP16.3) of MTB encoded by gene hspX has been reported to be critical for the survival of MTB. In the present study, the effect of recombinant murine interferon-gamma (rmIFN-γ) and recombinant murine interleukin-10 (rmIL-10) on the expression of gene hspX of MTB in murine macrophage RAW264.7 has been investigated. By real-time RT-PCR, it was observed that three increasing concentrations (5, 25 and 50 ng/ml) of rmIFN-γ significantly up-regulated the expression of hspX whereas similar concentrations of rmIL-10 (5, 25 and 50 ng/ml) significantly down-regulated the hspX expression. This effect was not only dependent on the concentration of the stimulus but this was time-dependent as well. A contrasting pattern of hspX expression was observed against combinations of two different concentrations of rmIFN-γ and rmIL-10. The study results suggest that rIL-10 mediated down-regulation of hspX expression, in the presence of low concentration of rIFN-γ, could be used as an important strategy to decrease the dormancy of MTB in its host and thus making MTB susceptible to the standard anti-mycobacterial therapy used for treating tuberculosis. However, as these are only preliminary results in the murine cell line model, this hypothesis needs to be first validated in human cell lines and subsequently in animal models mimicking the latent infection using clinical isolates of MTB before considering the development of modified regimens for humans.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Interferon-gamma/pharmacology , Interleukin-10/pharmacology , Macrophages/microbiology , Mycobacterium tuberculosis/genetics , Antigens, Bacterial/metabolism , Time Factors , Bacterial Proteins/genetics , Recombinant Proteins/pharmacology , Down-Regulation/drug effects , Dose-Response Relationship, Drug , Antigens, Bacterial/genetics
3.
Braz. j. med. biol. res ; 49(4): e4324, 2016. tab, graf
Article in English | LILACS | ID: biblio-951663

ABSTRACT

The effects of interleukin-10 (IL-10) and glucose on mRNA and protein expression of osteoprotegerin (OPG), and its ligand, receptor activator of nuclear factor-κB ligand (RANKL), were investigated in human periodontal ligament fibroblasts (HPDLFs). Primary HPDLFs were treated with different concentrations of IL-10 (0, 1, 10, 25, 50, and 100 ng/mL) or glucose (0, 5.5, 10, 20, 30, and 40 mmol/L). Changes in mRNA and protein expression were examined using the reverse-transcription polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. After IL-10 treatment, mRNA and protein levels of OPG were increased, while mRNA and protein levels of RANKL were decreased (P<0.05), both in a concentration-dependent manner. Glucose stimulation had the opposite concentration-dependent effect to that of IL-10 on OPG and RANKL expression. IL-10 upregulated OPG expression and downregulated RANKL expression, whereas high glucose upregulated RANKL and downregulated OPG in HDPLFs. Abnormal levels of IL-10 and glucose may contribute to the pathogenesis of periodontal disease.


Subject(s)
Humans , Periodontal Ligament/drug effects , Interleukin-10/pharmacology , RANK Ligand/metabolism , Osteoprotegerin/metabolism , Fibroblasts/drug effects , Glucose/pharmacology , Periodontal Ligament/cytology , Time Factors , RNA, Messenger/analysis , Down-Regulation , Up-Regulation , Cells, Cultured , Blotting, Western , Analysis of Variance , Reverse Transcriptase Polymerase Chain Reaction , Fibroblasts/metabolism
4.
Yonsei Medical Journal ; : 445-452, 2013.
Article in English | WPRIM | ID: wpr-89563

ABSTRACT

PURPOSE: Hyperoxia has the chief biological effect of cell death. We have previously reported that cathepsin B (CB) is related to fetal alveolar type II cell (FATIIC) death and pretreatment of recombinant IL-10 (rIL-10) attenuates type II cell death during 65%-hyperoixa. In this study, we investigated what kinds of changes of CB expression are induced in FATIICs at different concentrations of hyperoxia (65%- and 85%-hyperoxia) and whether pretreatment with rIL-10 reduces the expression of CB in FATIICs during hyperoxia. MATERIALS AND METHODS: Isolated embryonic day 19 fetal rat alveolar type II cells were cultured and exposed to 65%- and 85%-hyperoxia for 12 h and 24 h. Cells in room air were used as controls. Cytotoxicity was assessed by lactate dehydrogenase (LDH) released into the supernatant. Expression of CB was analyzed by fluorescence-based assay upon cell lysis and western blotting, and LDH-release was re-analyzed after preincubation of cathepsin B-inhibitor (CBI). IL-10 production was analyzed by ELISA, and LDH-release was re-assessed after preincubation with rIL-10 and CB expression was re-analyzed by western blotting and real-time PCR. RESULTS: LDH-release and CB expression in FATIICs were enhanced significantly in an oxygen-concentration-dependent manner during hyperoxia, whereas caspase-3 was not activated. Preincubation of FATIICs with CBI significantly reduced LDH-release during hyperoxia. IL-10-release decreased in an oxygen-concentration-dependent fashion, and preincubation of the cells with rIL-10 significantly reduced cellular necrosis and expression of CB in FATIICs which were exposed to 65%- and 85%-hyperoxia. CONCLUSION: Our study suggests that CB is enhanced in an oxygen-concentration-dependent manner, and IL-10 has an inhibitory effect on CB expression in FATIICs during hyperoxia.


Subject(s)
Animals , Rats , Cathepsin B/genetics , Down-Regulation , Gene Expression Regulation , Hyperoxia/genetics , Interleukin-10/pharmacology , L-Lactate Dehydrogenase/metabolism , Necrosis/chemically induced , Oxygen/metabolism
5.
Journal of Korean Medical Science ; : 7-14, 2002.
Article in English | WPRIM | ID: wpr-82633

ABSTRACT

Inflammatory responses are strictly regulated by coordination of pro-inflammatory and anti-inflammatory mediators. Interleukin-4 (IL-4) and interleukin-10 (IL-10) have typically the biologic anti-inflammatory effects on monocytes, but uncertain effects on polymorphonuclear leukocytes (PMNs). The PMNs are the first line of cellular response for host defense during acute inflammation. To modify hyper-inflammatory reaction with biologic anti-inflammatory mediators, we have determined the biologic anti-inflammatory activities of IL-4 and IL-10 on human PMNs. Human PMNs were pretreated with IL-4 or IL-10 and then stimulated with formyl methionyl leucyl phenylalanine (fMLP) for times indicated. The level of H2O2, interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-alpha) were determined in the each cell free supernatants. fMLP plays the role of a typical pro-inflammatory agent and, at least in determined conditions, down-regulated TNF release. IL-4 acts as an anti-inflammatory mediator but IL-10 did not show its anti-inflammatory activities on fMLP-stimulated human PMNs. IL-4 and IL-10 have different anti-inflammatory mechanisms. Perhaps, IL-10 needs co-factors to act as an anti-inflammatory mediator.


Subject(s)
Humans , Cells, Cultured , Hydrogen Peroxide/metabolism , Interleukin-10/pharmacology , Interleukin-4/pharmacology , Interleukin-8/metabolism , Intracellular Fluid , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Neutrophils/cytology , Tumor Necrosis Factor-alpha/metabolism
7.
Journal of Korean Medical Science ; : 480-486, 1999.
Article in English | WPRIM | ID: wpr-187372

ABSTRACT

Chemokine KC has been considered to be a murine homologue of human GRO/MGSA and was identified as chemoattractant for monocytes and neutrophils. This study examined the expression of KC mRNA in thioglycollate-elicited mouse peritoneal macrophages that were stimulated in vitro with Candida albicans (CA). Also examined were the inhibitory effects of IL-10 on the CA-induced expression of KC gene by Northern blot analysis. CA was found to induce chemokine gene expression in a gene-specific manner, CXC chemokine IP-10 mRNA expression was not detected in CA-stimulated macrophages. Maximum KC mRNA expression was observed approximately 2 hr after adding CA. The inhibitory action of IL-10 to CA-induced KC mRNA expression on mouse peritoneal macrophages was independent on concentration and stimulation time of IL-10 and was observed approximately one hour after adding IL-10 and CA simultaneously. IL-10 produced a decrease in the stability of KC mRNA, and CA-stimulated macrophages with cycloheximide blocked the suppressive effect of IL-10. These results suggest that CA also induces chemokine KC from macrophages, and IL-10 acts to destabilize CA-induced KC mRNA and de novo synthesis of an intermediate protein is a part of the IL-10 suppressive mechanism.


Subject(s)
Mice , Animals , Blotting, Northern , Candida albicans/metabolism , Cells, Cultured , Chemotactic Factors/genetics , Dactinomycin/pharmacology , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Growth Substances/genetics , Interleukin-10/pharmacology , Interleukin-10/metabolism , Macrophages/physiology , Mice, Inbred BALB C , Nucleic Acid Synthesis Inhibitors/pharmacology , RNA, Messenger/metabolism , RNA, Messenger/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL